1	Supplementary material:
2	
3	
4	Structural characterization of the sporulation protein GerM from
5	Bacillus subtilis
6	
7	
8	Jennyfer Trouve ¹ , Ahmed Mohamed ² , Francisco Leisico ³ , Carlos Contreras-Martel ¹ ,
9	Bowen Liu ¹ , Caroline Mas ¹ , David Z. Rudner ⁴ , Christopher D. A. Rodrigues ^{2*} and Cecile
10	Morlot ^{1*}
11	
12	
13	¹ Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 38044
14	Grenoble, France
15	² The ithree institute, University of Technology, Sydney, Broadway NSW 2007,
16	Australia
17	³ UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia,
18	Universidade Nova de Lisboa, Caparica, Portugal
19	⁴ Department of Microbiology and Immunobiology, Harvard Medical School, Boston
20	MA 02115, USA
21	
22	
23	* Email: cecile.morlot@ibs.fr (CM); christopher.rodrigues@uts.edu.au (CDAR)
24 25 26 27 28 29 30 31 32	

33 Table S1

34 Mass spectrometry analysis of GerM recombinant constructs.

Construct	Theoretical MW (Da)	Experimental MW (Da)
GerMN1	15310.4	15310.9
GerM ₂₆₋₃₆₆ (in solution)	37172.5	37173.4
GerM ₂₆₋₃₆₆ (dissolved crystals)	37172.5	37173.1
GerM ₂₆₋₃₆₆ (D202R-D203R)	37254.7	37255.4
GerM ₂₆₋₃₆₆ (D219R)	37213.6	26706.1
GerM ₂₆₋₃₆₆ (R246E)	37145.4	20340.5
GerM ₂₆₋₃₆₆ (K252E)	37173.4	21932.0 and 21830.7
GerM ₂₆₋₃₆₆ (K268E)	37173.4	23968.1 and 26066.5
GerM ₂₆₋₃₆₆ (D275R)	37213.6	37214.4
GerM ₂₆₋₃₆₆ (E278R)	37199.6	37200.0

37 Grey highlights indicate recombinant constructs that suffered from proteolytic

38 degradation. MW, molecular weight

68 Table S2

69 70 Strains, plasmids and oligonucleotides used in this study.

Genotype/description/sequence Construct

Source

				-
$\boldsymbol{\nu}$	CII	tilic	ctr	ninc
1).	SUU	1.1115	SU	41115

PY79	Prototrophic wild-type	Youngman, 1983
BCR287	spoIIIAH::kan	Rodrigues et al.,
		2013
BCR1237	gerM::erm	Rodrigues et al.,
		2016
BAT0044	spoIIIAH::kan, gerM::erm	This work
BAT0047	gerM::erm, ycg0::P _{gerM} -gerM (D275R) (spec)	This work
BAT0048	spoIIIAH::kan, gerM::erm, ycgU::P _{gerM} -gerM (D2/5K) (spec)	This work
BA10075	gerM::erm, ycgU::PgerM-gerM (D202R-D203R) (spec)	I his work
BAI0070	spoinian::kun, germ::erm, ycg0::PgerM-germ (D202R-D203R) (spec)	This work
DA10094	ger M.:er III, ycyO::PgerM-ger M (E278K) (spec)	This work
DA10095	germerm, spomankun, ycgorgerm-germ (E276K) (spec)	THIS WOLK
Plasmids		
pCR280	His6-SUMO-aerM26-366 (F26-F366, B. subtilis)	This work
pCR282	His6-SUMO-gerMN1 (T76-E213, B. subtilis)	This work
pCR283	His6-SUMO-gerMN2 (T223-F366, B. subtilis)	This work
pAT005	His6-SUMO-gerM ₂₆₋₃₆₆ (K268E) (F26-F366, B. subtilis)	This work
pAT006	His6-SUMO-gerM ₂₆₋₃₆₆ (D219R) (F26-F366, B. subtilis)	This work
pAT007	His6-SUMO-gerM ₂₆₋₃₆₆ (E278R) (F26-F366, B. subtilis)	This work
pAT008	His6-SUMO-gerM ₂₆₋₃₆₆ (R246E) (F26-F366, B. subtilis)	This work
pAT009	His6-SUMO-gerM ₂₆₋₃₆₆ (K252E) (F26-F366, B. subtilis)	This work
pAT010	His6-SUMO-gerM ₂₆₋₃₆₆ (D275R) (F26-F366, B. subtilis)	This work
pAT011	His6-SUMO-gerM ₂₆₋₃₆₆ (D202R-D203R) (F26-F366, B. subtilis)	This work
pAT014	ycgO::P _{gerM} -gerM (spec)	This work
pAT019	ycgO::P _{gerM} -gerM(D275R) (spec)	This work
pAT023	усдО::P _{gerM} -gerM(D202R-D203R) (spec)	This work
pAT026	ycg0::P _{gerM} -gerM(E278R) (spec)	This work
Oligonucleoti	dos	
		ml · l
0A1U12	ttggctaaagggccgagcgaggtgagcgggctgttaaca	I his work
041013	1011331301110111311110111001111301133	LUIS WOUL

OATOIZ	liggliaaagggligaglgaglgaglgggligliaala	THIS WOLK
oAT013	tgttaacagcccgctcacctcgctcggccctttagccaa	This work
oAT014	gtgagcgggctgttaacacgcttcagtgaagatgtaaag	This work
oAT015	ctttacatcttcactgaagcgtgttaacagcccgctcac	This work
oAT016	gaaacagccggtgtaaatcgtctcactgctacccatccg	This work
oAT017	cggatgggtagcagtgagacgatttacaccggctgtttc	This work
oAT018	tacgtgccggtgaccaaagaaatcgacaattcggaaaaa	This work
oAT019	tttttccgaattgtcgatttctttggtcaccggcacgta	This work
oAT020	ggagggacgccgatctcacgtcgtttaagccgcaaagacggc	This work
oAT021	gccgtctttgcggcttaaacgacgtgagatcggcgtccctcc	This work
oAT022	cgaatcgacaattcggaagaagacgacatcacagcagcc	This work
oAT023	ggctgctgtgatgtcgtcttcttccgaattgtcgattcg	This work
oAT024	ctgttaacagacttcagtagagatgtaaagctggtcagc	This work
oAT025	gctgaccagctttacatctctactgaagtctgttaacag	This work
oAT058	cgcaagcttacagcccgggaagtcagcacaattc	This work
oAT059	cgcggatcccgattgtatgtacataaacca	This work
oCR607	${\it gctcacagagaacagattggtggttttcaatctgataaggcagccgag}$	This work
oCR608	acggagctctgctcttctaccttaaaaaactacccgtattcacttg	This work
oCR610	${\it gctcacagagaacagattggtggtactgttatgagggagctttatctc}$	This work
oCR611	acggagctctgctcttctaccttattccaaattaatgccgtctttgcg	This work
oCR612	gctcacagagaacagattggtggtacccatccgctgacagtctacta	This work

- 71 Plasmid Construction
- 72

pCR280 [*His6-SUMO-gerM*₂₆₋₃₆₆ (residues F26 to F366 of GerM from *B. subtilis*)] was
generated by isothermal assembly of a PCR product containing the relevant DNA
segment of *gerM* (oligonucleotide primers oCR607 and oCR608 on PY79 genomic
DNA) into pTB146 [*His6-SUMO*] cut with *Sap*I. pTB146 is a protein expression vector
provided by T. Bernhardt, Harvard Medical School, Boston.

78

pCR282 [*His6-SUMO-gerMN1* (residues T76 to E213 of GerM from *B. subtilis*)] was
generated by isothermal assembly of a PCR product containing the relevant DNA
segment of *gerM* (oligonucleotide primers oCR610 and oCR611 on PY79 genomic
DNA) into pTB146 [*His6-SUMO*] cut with *Sap*I.

83

pCR283 [*His6-SUMO-gerMN2* (residues T223 to F366 of GerM from *B. subtilis*)] was
generated by isothermal assembly of a PCR product containing the relevant DNA
segment of *gerM* (oligonucleotide primers oCR612 and oCR608 on PY79 genomic
DNA) into pTB146 [*His6-SUMO*] cut with *Sap*I.

88

pAT005 [*His6-SUMO-gerM*₂₆₋₃₆₆(K268E) (F26-F366, *B. subtilis*)] was generated by
site-directed mutagenesis using oligonucleotide primers oAT012 and oAT013 on
pCR280.

92

pAT006 [*His6-SUMO-gerM*₂₆₋₃₆₆(D219R) (F26-F366, *B. subtilis*)] was generated by
site-directed mutagenesis using oligonucleotide primers oAT016 and oAT017 on
pCR280.

96

pAT007 [*His6-SUMO*-gerM₂₆₋₃₆₆(E278R) (F26-F366, *B. subtilis*)] was generated by
site-directed mutagenesis using oligonucleotide primers oAT024 and oAT025 on
pCR280.

pAT008 [*His6-SUMO-gerM*₂₆₋₃₆₆(R246E) (F26-F366, *B. subtilis*)] was generated by
 site-directed mutagenesis using oligonucleotide primers oAT018 and oAT019 on
 pCR280.

104

pAT009 [*His6-SUMO-gerM*₂₆₋₃₆₆(K252E) (F26-F366, *B. subtilis*)] was generated by
 site-directed mutagenesis using oligonucleotide primers oAT022 and oAT023 on
 pCR280.

108

pAT010 [*His6-SUMO-gerM*₂₆₋₃₆₆(D275R) (F26-F366, *B. subtilis*)] was generated by
site-directed mutagenesis using oligonucleotide primers oAT014 and oAT015 on
pCR280.

112

pAT011 [*His6-SUMO-gerM*₂₆₋₃₆₆(D202R-D203R) (F26-F366, *B. subtilis*)] was
generated by site-directed mutagenesis using oligonucleotide primers oAT020 and
oAT021 on pCR280.

116

pAT014 [*ycg0*::*P_{gerM}-gerM* (spec)] was generated by a two-way ligation of a EcoR1BamHI of a PCR product (oligonucleotide primers oAT0058 and oAT0059 on PY79
genomic DNA) containing the relevant DNA segment of GerM into pKM083 cut with *Eco*RI-*Bam*HI. pKM083 is an ectopic integration vector for recombination into the *ycg0* locus (David Z. Rudner and K. Marquis, Harvard Medical School, Boston).

122

pAT019 [*ycgO*::*P_{gerM}-gerM*(D275R) (F26-F366, *B. subtilis*)] was generated by site directed mutagenesis using oligonucleotide primers oAT014 and oAT015 on pAT014.

pAT023 [*ycg0*::*P_{gerM}- gerM*(D202R-D203R) (F26-F366, *B. subtilis*)] was generated by
 site-directed mutagenesis using oligonucleotide primers oAT020 and oAT021 on
 pAT014.

129

pAT026 [*ycgO*::*P_{gerM} gerM*(E278R) (F26-F366, *B. subtilis*)] was generated by site directed mutagenesis using oligonucleotide primers oAT024 and oAT025 on pAT014.

133 Figure S1. Structural characterization of GerMN1. A. Needle-shaped crystals of GerMN1 134 obtained in 200 mM Na acetate, 21% (w/vol) PEG 3,350. Scale bar, 100 µm. B. Overlay of the 135 GerMN1 domain (in green) from *B. subtilis* GerM with a dimer present in the asymmetric unit 136 of the GerMN_{Cp} crystal (PDB entry 5J7R). Note that the core of GerMN1 superposes with the 137 globular core of one GerMN_{Cp} molecule (in orange), while the $\beta 1\beta 2$ sheet of GerMN1 superposes with the equivalent β -sheet of the other GerMN_{Cp} molecule (in yellow). C. 138 139 Scattering data and model fits for GerMN in solution. The graph displays the GerMN 140 experimental scattering data (grey dots) and the fitting of the scattering curves computed 141 from the *ab initio* GerMN1 DAMMIF model (red curve) or from the GerMN1 crystal structure 142 (blue curve). **D.** GerMN_{Cp} crystal structure (orange cartoon) fitted into the DAMMIF generated 143 envelope of GerMN1 in solution (grey spheres).

Figure S2. Position and conservation of residues located at intramolecular and intermolecular interfaces of GerM. A. Alignment of the sequences of GerMN1 from B. subtilis GerM and GerMN_{Cp} from *C. perfringens*. Conserved residues are in red boxes; similar residues are shown by red letters boxed in blue. The secondary structures of GerMN1 and GerMN_{Cp} are indicated above and below the sequence alignment, respectively. Residues at the interface between the $\beta 1\beta 2$ sheet and the core of the GerMN domain are indicated by red stars. **B.** Alignment of the GerM sequences from *B. subtilis* (GerM_{Bsu}), *B. anthracis* (GerM_{Ban}), cereus (GerM_{Bce}), B. licheniformis (GerM_{Bli}), B. halodurans (GerM_{Bha}) and G. В. thermodenitrificans (GerM_{Gth}). Conserved residues are in red boxes; similar residues are shown by red letters boxed in yellow. The secondary structures of GerM_{Bsu} are indicated above the sequence alignment. Residues at the GerMN1-GerMN2 interface are indicated by black stars. Residues at the homodimerization interface are indicated by blue stars. Residues at the interface between the β 1 β 2 sheet and the core of the GerMN domain are indicated by red stars. Arrows indicate β -strands; α , α -helices; η , 3_{10} -helices.

189 Figure S3. Comparison of GerMN2 with RBM domains. A-C. Ribbon representations of GerMN2 (in light green) superimposed onto the second periplasmic RBM (D3) of PrgH from *S. typhimurium* (**A**, PDB code 4G1I, in magenta), and onto SpoIIIAG (**B**, PDB code 5WC3, in magenta) and SpoIIIAH (C, PDB code 3UZO, in magenta) from B. subtilis.

219 Figure S4. SEC-MALLS analysis of GerM₂₆₋₃₆₆ in solution. Chromatograms are displayed with the absorbance at 280 nm as a black line and arbitrary units displayed on the left axis, and molecular weight estimation as a green line with values (in Da) displayed on the right axis. The estimated average molecular weight (MW) is detailed on the graph.